Friday, July 22, 2016

C++ Solution to UVA 459 - Graph Connectivity Solution Union by Rank and Path Compression


Problem Link:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=400
These are my old codes I kept for visual explanations but I lost all the data. Since these are old codes I can not remember if I made any breaking changes to the code later. For the algorithm please see Introduction to Algorithms book.

Problem Explanation & Visalization:

TODO

Input & Output Explanation:

TODO

Input & Output:

Input:
1 E AB CE DB EC

Output:
2

More input and output in udebug:
https://www.udebug.com/UVa/459

Code:

/**
* Author: Asif Ahmed
* Site: https://quickgrid.wordpress.com
* Problem: UVA 10583 - Ubiquitous Religions
* Technique: Disjoint-Set Forest Union by Rank
* and Path Compression using Structure.
*/
#include<stdio.h>
#include<string.h>
#define N 202
static char s[2];
static int parentArray[N];
static int rankArray[N];
int disjointSetCount;
// Basically create n sets with elements from
// 0 to n - 1. Reset their rank to 0 since the
// sets have only one element. So each set is
// basically pointing to itself in the parent
// array.
void MakeSet(int n){
for(int i = 0; i < n; ++i){
parentArray[i] = i;
rankArray[i] = 0;
}
disjointSetCount = n;
}
// Find the parent of the node and
// do path compression in the process.
int FindSet(int x){
if( x != parentArray[x] )
parentArray[x] = FindSet( parentArray[x] );
return parentArray[x];
}
// Check if both elements are in the same set.
bool SameSet(int x, int y){
return FindSet(x) == FindSet(y);
}
// Check if they are already in the same set.
// If not then the tree or Set with the bigger
// rank becomes the parent of tree with smaller
// rank.
// If both have same rank then arbitrarily choose
// one to be the parent of the other set. Here y
// is chosen.
void Link(int x, int y){
if( !SameSet(x, y) ){
if( rankArray[x] > rankArray[y] )
parentArray[y] = x;
else{
parentArray[x] = y;
if(rankArray[x] == rankArray[y])
rankArray[y] = rankArray[y] + 1;
}
--disjointSetCount;
}
}
// Union two sets.
// First find their representative and link them.
void Union(int x, int y){
Link( FindSet(x), FindSet(y) );
}
int main(){
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
int n;
int i, j;
scanf("%d\n\n", &n);
bool blank = false;
while( n-- ){
char c = getchar();
getchar();
MakeSet( c - 'A' + 1);
while( gets(s) && strlen(s) )
Union( s[0] - 'A' , s[1] - 'A' );
if(blank)
putchar('\n');
blank = true;
printf("%d\n", disjointSetCount);
}
return 0;
}

No comments: